
Year 12 OCR
Computer
Science A-Level

Curriculum Intent: The aims of this qualification are to enable learners to develop:

• An understanding and ability to apply the fundamental principles and concepts of computer science, including: abstraction,
decomposition, logic, algorithms and data representation

• The ability to analyse problems in computational terms through practical experience of solving such problems,
including writing programs to do so

• The capacity to think creatively, innovatively, analytically, logically, and critically

• The capacity to see relationships between different aspects of computer science

Year 12
Computer
systems
Component 1

Term 1:

Term 2:

Term 3

Topic Titles (in
order of delivery)

Paper 1: Computer Systems
The characteristics of contemporary
processors, input, output and storage devices
Software and software development
Paper 2: Programming
Computational Thinking

• Thinking abstractly

• Thinking ahead

• Think procedurally

• Thinking logically / concurrently
Fundamentals of C#

• Use of IDE (Visual Studio 2022)

• Different data types

• Basic Console programs

• Commenting and debugging

Paper 1: Computer Systems
Exchanging data
Paper 2 Programming:
Data types, data structures and algorithms
Programming paradigms

• Procedural

• Declarative

• Object Oriented

• Event Driven

Paper 1: Computer Systems
Legal, moral, cultural, and ethical issues
Standard Algorithms

• Linear Search
• Binary Search
• Binary Tree
• Bubble and Insertion Sort
• Merge and quick sort
• Optimisation – Dijkstra / A* algorithms

Paper 2: Programming
Functions
Analyse and define algorithms to solve problems

NEA:
Project Proposals
Analysis

Key knowledge /
Retrieval topics

Paper 1: Computer Systems
Components of a computer and their uses
(a) The Arithmetic and Logic Unit; ALU, Control
Unit and Registers (Program Counter; PC,
Accumulator; ACC, Memory Address Register;
MAR, Memory Data Register; MDR, Current
Instruction Register; CIR). Buses: data, address
and control: how this relates to assembly
language programs.
(b) The Fetch-Decode-Execute Cycle; including
its effects on registers.
(c) The factors affecting the performance of the
CPU:

• clock speed
• number of cores

Paper 1: Computer Systems
How data is exchanged between different systems
(a) Lossy vs Lossless compression.
(b) Run length encoding and dictionary coding for lossless
compression.
(c) Symmetric and asymmetric encryption.
(d) Different uses of hashing.
Networks:

a) Characteristics of networks and the importance of
protocols and standards.
(b) The internet structure:

• The TCP/IP Stack.
• DNS

• Protocol layering.

• LANs and WANs.

Paper 1: Computer Systems
The individual moral, social, ethical, and cultural
opportunities, and risks of digital technology.
Legislation surrounding the use of computers and
ethical issues that can or may in the future arise
from the use of computers.

• Computers in the workforce.

• Automated decision making.

• Artificial intelligence.

• Environmental effects.

• Censorship and the Internet.

• Monitor behaviour.

• Analyse personal information.

• Piracy and offensive communications.

• cache.
(d) The use of pipelining in a processor to
improve efficiency.
(e) Von Neumann, Harvard and contemporary
processor architecture
Types of software and the different
methodologies used to develop software
Paper 2: Programming
Variables
Operators
Basic C# instructions
Sequence / Selection / Iteration

• Packet and circuit switching.
(c) Network security and threats, use of firewalls, proxies
and encryption.
(d) Network hardware.
(e) Client-server and peer to peer.
Paper 2: Programming
How data is represented and stored within different
structures. Different algorithms that can be applied to
these structures

• Arrays / Tuples / records

• Queues

• Lists / Linked Lists

• Stacks

• Hash tables

• Graphs

• Trees

• Layout, colour paradigms and character
sets.

Standard algorithms
• Recognise, use, and trace each algorithm
• Explain usage

Paper 2: Programming
Be able to analyse a problem
Be able to develop algorithms to solve specific
problems
Be able to compare different algorithms in terms
of Big O:

• Time efficiency
• Space efficiency

NEA:

Completion of project proposal
Completion of Analysis

Understanding /
Sequence of

delivery

Paper 1: Computer Systems

Structure and function of the processor

Types of processor

Input, output and storage

Systems Software

Applications Generation

Software Development

Types of Programming Language
Paper 2: Programming
Abstraction
(a) The nature of abstraction.
(b) The need for abstraction.
(c) The differences between an abstraction and
reality.
(d) Devise an abstract model for a variety of
situations.

Thinking ahead
(a) Identify the inputs and outputs for a given
situation.
(b) Determine the preconditions for devising a
solution to a problem.
(c) The nature, benefits and drawbacks of
caching.
(d) The need for reusable program
components.
Think procedurally
(a) Identify the components of a problem.

Paper 1: Computer Systems
Compression, Encryption and Hashing
Databases
Networks

Web Technologies

Boolean Algebra
Paper 2: Programming
Subroutines and recursion

Data Types

Data Structures

• Arrays / Tuples / records

• Queues

• Lists / Linked Lists

• Stacks

• Hash tables
• Graphs

• Trees

Paper 1: Computer Systems
Computing related legislation
Moral and ethical Issues
Paper 2: Programming
Analysis of problems
Design of algorithms to solve a problem
Comparing algorithms
Functions
Big O notation of functions

• Constant time
• Linear
• Polynomial
• Exponential
• Logarithmic

NEA:

Requirements of the NEA
Requirements of a project proposal
Requirements of Analysis

(b) Identify the components of a solution to a
problem.
(c) Determine the order of the steps needed to
solve a problem.
(d) Identify sub-procedures necessary to solve a
problem.
Thinking logically
(a) Identify the points in a solution where a
decision has to be taken.
(b) Determine the logical conditions that affect
the outcome of a decision.
(c) Determine how decisions affect flow
through a program.
Thinking concurrently
(a) Determine the parts of a problem that can
be tackled at the same time.
(b) Outline the benefits and trade offs that
might result from concurrent processing in a
particular situation.

Assessments
Knowledge check

Programming Homework

PPE 1

Programming Homework

Year 12 PPE

NEA Approved project proposal and analysis

Year 12 OCR
Computer
Science A-Level

Curriculum Intent: The aims of this qualification are to enable learners to develop:

• An understanding and ability to apply the fundamental principles and concepts of computer science, including: abstraction, decomposition,
logic, algorithms and data representation

• The ability to analyse problems in computational terms through practical experience of solving such problems,
including writing programs to do so

• The capacity to think creatively, innovatively, analytically, logically, and critically

• The capacity to see relationships between different aspects of computer science

Year 12
Algorithms and
programming
Component 02

Term 1:

Term 2:

Term 3

Topic Titles (in
order of delivery)

Elements of computational thinking
Problem solving and programming

Programming techniques
Computational methods
Algorithms

Algorithms

Key knowledge /
Retrieval topics

Understand what is meant by computational

thinking

How computers can be used to solve problems

and programs can be written to solve them

The use of algorithms to describe problems and standard
algorithms

The use of algorithms to describe problems and
standard algorithms

Understanding /
Sequence of

delivery

Thinking abstractly

Thinking ahead

Thinking procedurally

Thinking logically

Thinking concurrently

Algorithms

(a) Analysis and design of algorithms for a given situation.
(b) The suitability of different algorithms for a given task

and data set, in terms of execution time and space.
(c) Measures and methods to determine the efficiency of

different algorithms, Big O notation (constant, linear,

polynomial, exponential and logarithmic complexity).

Algorithms
(d) Comparison of the complexity of algorithms.
(e) Algorithms for the main data structures, (stacks,
queues, trees, linked lists, depth-first (post-order)
and breadth-first traversal of trees).
(f) Standard algorithms (bubble sort, insertion sort,
merge sort, quick sort, Dijkstra’s shortest path
algorithm, A* algorithm, binary search and linear
search)

Assessments

