
Year 13 OCR
Computer
Science A-Level

Curriculum Intent: The aims of this qualification are to enable learners to develop:

• An understanding and ability to apply the fundamental principles and concepts of computer science, including: abstraction,
decomposition, logic, algorithms and data representation

• The ability to analyse problems in computational terms through practical experience of solving such problems,
including writing programs to do so

• The capacity to think creatively, innovatively, analytically, logically, and critically

• The capacity to see relationships between different aspects of computer science

Year 13
Computer
systems
Component 1

Term 1:

Term 2:

Term 3

Topic Titles (in
order of delivery)

Paper 1:
Data validation and exception handling
OOP
Reading / writing from a text and binary file
NEA: Abstraction / Decomposition
Paper 2:
Stack Frame
Recursion
Static / Dynamic data structures
Boolean Logic

Paper 1:
Database

NEA Development and testing

Paper 2:
Standard Algorithms – Binary Tree search / Dijkstra’s
shortest path
Regular Languages
Context Free Languages – Backus-Naur Form
Turing Machine and the Halting problem
Data Compression Principles

Revision for Exam
Completion of NEA

Key knowledge /
Retrieval topics

Paper 1:
How to use exception handling
Use of aggregation / composition /
polymorphism / overriding
How to read and write from a binary and text
file
Paper 2:
Describe when the stack frame is used, sub-
routine calls
Describe the process of recursion and how to
use it.
Differences between static and dynamic
structures and their usage
Boolean Logic

• Logic gates and truth tables

• Logic circuits for Boolean expression

• half-adder / full adder

• use of edge triggered D-type flip-flop
as memory unit

Paper 1:
Databases:

• Be able to produce an Entity Relationship
Diagram to describe a data model

• Explain relational database

• 3rd Normal form

• SQL

• Client Server databases
Paper 2:
Regular Languages

• Finite State Machine

• State transition diagrams

• Mealy Machine

• Maths for regular expressions

• create regular expressions

• Sets
Context Free Languages – Backus-Naur Form

• use

• why syntax can be checked using BNF or syntax
diagrams

Turing Machine and the Halting problem

• know what a Turing machine is, and how they
can be view as a single fixed program computer

Data Compression Principles

• Run length encoding

• dictionary based

Understanding /
Sequence of

delivery

Paper 1:
Try – Catch – Finally blocks, when to use.
Demonstrate and explain how OOP supports core
concepts and improves programming techniques and
maintainability

Paper 2:
Content of stack frame, return addresses
Explain recursive techniques, situations when
recursion is more useful than iteration
Data Structures: Hash table. dictionary

Boolean Logic

• Logic gates and truth tables

• Logic circuits for Boolean expression

• half-adder / full adder

use of edge triggered D-type flip-flop as
memory unit

Paper 1:

Paper 2:
Be able to and use Regular Languages

• Finite State Machine

• State transition diagrams

• Mealy Machine

• Maths for regular expressions

• Sets
o Subset / proper subset / countable
o Set operations

Context Free Languages – Backus-Naur Form

• use

• why syntax can be checked using BNF or syntax
diagrams

Turing Machine and the Halting problem

• states

• state transition

• alphabet

• sensing / writing head

• transition rules

Assessments
NEA Preparation

Programming Homework

PPE 1

Programming Homework

A-level exams

Year 13 OCR
Computer
Science A-Level

Curriculum Intent: The aims of this qualification are to enable learners to develop:

• An understanding and ability to apply the fundamental principles and concepts of computer science, including: abstraction, decomposition,
logic, algorithms and data representation

• The ability to analyse problems in computational terms through practical experience of solving such problems,
including writing programs to do so

• The capacity to think creatively, innovatively, analytically, logically, and critically

• The capacity to see relationships between different aspects of computer science

Year 12
Algorithms and
programming
Component 02

Term 1:

Term 2:

Term 3

Topic Titles (in
order of delivery)

Elements of computational thinking
Problem solving and programming

Programming techniques
Computational methods
Algorithms

Algorithms

Key knowledge /
Retrieval topics

Understand what is meant by computational

thinking

How computers can be used to solve problems

and programs can be written to solve them

The use of algorithms to describe problems and standard
algorithms

The use of algorithms to describe problems and
standard algorithms

Understanding /
Sequence of

delivery

Thinking abstractly

Thinking ahead

Thinking procedurally

Thinking logically

Thinking concurrently

Algorithms

(a) Analysis and design of algorithms for a given situation.
(b) The suitability of different algorithms for a given task

and data set, in terms of execution time and space.
(c) Measures and methods to determine the efficiency of

different algorithms, Big O notation (constant, linear,

polynomial, exponential and logarithmic complexity).

Algorithms
(d) Comparison of the complexity of algorithms.
(e) Algorithms for the main data structures, (stacks,
queues, trees, linked lists, depth-first (post-order)
and breadth-first traversal of trees).
(f) Standard algorithms (bubble sort, insertion sort,
merge sort, quick sort, Dijkstra’s shortest path
algorithm, A* algorithm, binary search and linear
search)

Assessments

